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Abstract. In 1987, Northby presented an efficient lattice based search and optimization procedure to 
compute ground states of n-atom Lennard-Jones clusters and reported putative global minima for 
13 ~< n ~< 150. In this paper, we introduce simple data structures which reduce the time complexity of 
the Northby algorithm for lattice search from O(n~) per move to O(n~) per move for an n-atom 
cluster involving full Lermard-Jones potential function. If nearest neighbor potential function is used, 
the time complexity can be further reduced to O(log n) per move for an n-atom cluster. The lattice 
local minimizers with lowest potential function values are relaxed by a powerful Truncated Newton 
algorithm. We are able to reproduce the minima reported by Northby. The improved algorithm is so 
efficient that less than 3 minutes of CPU time on the Cray-XMP is required for each cluster size in the 
above range. We then further improve the Northby algorithm by relaxing every lattice local minimizer 
found in the process. This certainly requires more time. However, lower energy configurations were 
found with this improved algorithm for n = 65, 66, 75, 76, 77 and 134. These findings also show that in 
some cases, the relaxation of a lattice local minimizer with a worse potential function value may lead to a 
local minimizer with a better potential function value. 
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I .  Introduct ion  

T h e  m i n i m i z a t i o n  of  p o t e n t i a l  ene rgy  func t ions  of  c lusters  of  a t o m s  is k n o w n  as 

the  molecular conformat ion p r o b l e m .  G l o b a l  min imize r s  (or  ground states) of  

p o t e n t i a l  ene rgy  func t ions  a re  o f  g rea t  in te res t  to  r e sea rche r s  in chemis t ry ,  

b io logy ,  physics ,  and  op t imiza t i on .  O n e  o f  the  f u n d a m e n t a l  p r o b l e m s  in mo le c u -  

la r  c o n f o r m a t i o n  is the  min imiza t i on  of  the  pu re  L e n n a r d - J o n e s  p o t e n t i a l  

func t ion  [5]. This  p r o b l e m  is ve ry  ha rd  to solve  be c a use  i t  has  m a n y  loca l  

min imizers .  H o a r e  [7] has  c l a imed  tha t  the  n u m b e r  of  local  min imize r s  of  an 

n - a t o m  c lus ter  grows as fast  as the  the  func t ion  O(en2). N o n e t h e l e s s ,  m a n y  p a p e r s  

have  b e e n  p u b l i s h e d  on  c o m p u t a t i o n a l  m e t h o d s  [1 ,2 ,4 ,6 ,7 ,8 ,10 ,12 ,13 ,16-23]  and  

pu t a t i ve  g loba l  m i n i m a  for  c lus ter  sizes as large  as n = 150 have  b e e n  r e p o r t e d  

[7,16,19]. 

T h e  mos t  successful  a lgo r i thm for  min imiz ing  L e n n a r d - J o n e s  c lus ters  has  b e e n  

N o r t h b y ' s  a lgor i thm.  N o r t h b y  m a k e s  use  of  the  IC  and  F C  la t t ices  (which a re  

de sc r ibed  in de ta i l  in A p p e n d i x  A )  in f inding g o o d  s ta r t ing  po in t s  for  con t inuous  

min imiza t ion .  S u p p o s e  tha t  we  w a n t  to  f ind the  g loba l  m in imize r  for  an n - a t o m  

cluster .  W e  m a y  first find an  IC  o r  F C  la t t ice  wi th  m I> n poin ts .  W e  m a y  then  

assign the  n a t o m s  to n of  the  m la t t ice  points .  W i t h  each  such ass ignment ,  t h e r e  
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is a corresponding configuration of the cluster and an energy function value. We 
will call such a configuration a lattice configuration. Two lattice configurations are 
said to be neighbors if one can be obtained from another by reassigning an atom 
to an unassigned lattice point. A lattice local minimizer is a lattice configuration 
whose corresponding energy value is not greater than all of its neighbor's. The 
Northby algorithm first finds a set of lattice local minimizers and then relaxes 
those lattice minimizers by performing continuous minimization starting with 
those lattice minimizers. With this algorithm, Northby is able to publish putative 
global minima for cluster sizes ranging from 13 to 150 [16]. These values are 
believed to be global minima and serve as a standard to test algorithms for 
molecular conformation. 

In Northby's algorithm, the lattice search part solves a discrete optimization 
problem by moving from one lattice configuration to another (neighboring) lattice 
configuration with a better function value. We call each of these move a Psivot (or 
just a move). In Northby's implementation [16], each move takes O(n-~) for a 
cluster with n atoms. In [24], we have reduced the time complexity of each move 

2 
to O(n~) for a cluster with n atoms. Therefore, with the supercomputer CM-5 and 
a two-level simulated annealing algorithm, we have been able to Solve the lattice 
search problem for cluster sizes as large as 100,000. 

In this paper, we make two additional improvements on the Northby algorithm 
for Molecular Conformation problem. First, we note that by employing AVL trees 
[9], the time complexity per move can be reduced to O(logn) for an n-atom 
cluster if nearest neighbor potential is used. This improvement, combined with 
the improvement which we have made in [24], makes the Northby algorithm very 
fast. Less than 3 minutes of CPU time on the Cray-XMP is required for each 
cluster size in the studied range. 'Second, we relax every lattice local minimizer 
found instead of relaxing only those lattice local minimizers with best known 
potential function value. In this case, the algorithm requires more time. However, 
lower energy configurations were found with this improved algorithm for n = 65, 
66, 75, 76, 77 and 134. These findings also show that in some cases, the relaxation 
of  a lattice local minimizer with a worse potential function value may lead to a local 
minimizer with a better potential function value. 

The rest of this paper is organized as follows. In Section 2, we describe the 
Molecular Conformation problem and the Northby algorithm. In Section 3, we 
discuss improvements on the Northby algorithm. In Section 4, computational 
results on the Cray-XMP are presented. Concluding remarks are given in Section 
5,. 

2. Molecular Conformation and the Northby Algorithm 

Given n atoms (points), Px, P 2 , - - . ,  P.,  in 3-dimensional Euclidean space, the 
total 2-body potential energy function is defined as 

n . / - I  

V.(p) = Z E vLAIIpj-p,[I2), (1) 
�9 j = 2  i = 1  
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where ou(r  ) is the Lennard-Jones  potential function ([5]) defined as 

1 2 
vLj(r) = r 12 r 6. (2) 

The  problem is to find a configuration (positions for the n points) such that the 
total potential  energy function Vn(p) is minimized. 

Finding a global minimizer of Vn(p) is extremely difficult except for very small 
dus te r  sizes. The difficulty is due to the fact that while it is always possible with a 
supercomputer  and a local minimization algorithm (e.g. quasi-Newton method)  to 
relax any reasonable initial configuration to some local minimizer, unless the 
starting configuration is in the catchment basin of the global minimizer, the 
minimizer found may not be the global minimizer. Hoare  has claimed that the 
number  of local minimizers in the potential energy surface of an n-atom Lennard- 
Jones cluster is about O(e~2). Thus, it is impractical to perform an undirected 
search for all local minimizers of the potential function in order  to find the global 
minimizer, except for very small clusters. 

Chemical physicists have learned from previous research that the "ground 
states" of Lennard-Jones  clusters exhibit certain kind of lattice structures. So far, 
the most successful algorithms for computing ground states of Lennard-Jones  
clusters are based on lattice search followed by local minimization from the lattice 
minimizers, represented by the Northby algorithm [16]. As stated in [11], a 
critical assumption for lattice search based algorithms is that a well-defined set o f  
lattice structures contains at least one initial cluster configuration which relaxes to 
the ground state. As described and supported by computational results in [16], the 
IC and FC lattices (see Appendix A for definitions and descriptions of these 
lattices) are well-defined lattice structures for the pure Lennard-Jones  clusters. It 
is believed that in most o f  the cases, the relaxation of  a global lattice minimizer will 
results in a configuration with a lower energy than the relaxation of  a non-global 
lattice local minimizer. 

Northby's  algorithm for Molecular Conformation can be summarized as 
follows: 

Algorithm 1: Northby's Algorithm for Molecular Conformation 
1. Fix the base lattice to either the IC lattice or the FC lattice. Choose the lattice search potential 

function as either the full Lennard-Jones potential function or the nearest-neighbor potential 
function. 

2. Repeat 
2.1. randomly generate a lattice configuration; 
2.2. pivot to a lattice local minimizer; 
2.3. store all lattice local minimizers with the best known potential function value and 

discard those with worse potential function values; 
Until the lowest potential function value has been repeated for 250 times. 

3. Relax each of the lattice local minimizers stored in step 2 with the full Lennard-Jones 
potential function. 

Fig. 1. Northby's algorithm for Molecular Conformation. 
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Suppose that we want to find a lattice local minimizer of an n-atom duster.  Let 
us assume that we have chosen one of the two types of lattices for the lattice 
minimization. First, find the largest IC lattice which contains fewer than n points 
(if one of the IC lattices has exactly n points, we simply put all n atoms on the 
lattice points of that lattice and quit). Call this IC lattice the core and let Nco~e 
and Ico~e be the number of points in this IC lattice and the index set of this IC 
lattice, respectively. Next, find the next layer of IC (or FC) lattice which contains 
N,u~f (surface) points. Let Isurf be its index set. If Ncore + Nsurf = n, we simply put 
all n atoms on the lattice points of the lattice and quit. 

An initial configuration can be constructed by filling Nco~e atoms into the core 
lattice and randomly put the remaining ( n -  Nco~e ) atoms onto the N,,rf surface 
lattice sites. This is equivalent to partitioning the index set I~,rf to two subsets 
i filled and vacant [filled ~,f I ,~f  such that "surf = n - Ncore and that site i E I~u~f is filled with an 

l filled atom if and only if i E ",~rf �9 
Northby [16] computes the interaction matrix VP(i, j),  the pair interaction 

between an atom on site i and one on site j at the very beginning of the algorithm 
and stores it as a lookup table. After this is done, Northby's pivot algorithm for 
finding a lattice local minimizer can then be summarized as follows. 

Algorithm 2: Northby's Pivot Algorithm for Lattice Search 
1. (Find the most loosely bound atom} 

�9 f i l l e d  Find t t . . . .  E l ~ f  such that 

�9 =arg max { e~o VP(i, j ) +  ~ VP(i, j )} .  (3) 

Site itoos ~ is called the most loosely bound filled site and the atom at that site is called the most 
loosely bound atom. Let gain~ . . . .  be the maximum function value that the maximization problem 
in (3) achieves at iloo, e. Apparently, this is the total contribution that the atom at site i~ .... has 
towards the total potential energy. 

2. (Find the most tightly binding vacant site} 
Find itight ~ I ~  n' such that 

i,i~h,=arg man { ~ V P ( i , j ) +  ~ VP( i , ] ) } .  (4) 
i~g?/~' i ~  .... j~l~d,j,,it .... 

Site iagh, is called the most tightly binding vacant site. Let gainagh, be the minimum function value 
that the minimization problem in (4) achieves at itighr This is the new contribution that the atom 
at site iloos e has towards the total potential energy when moved to site iashr 

3. {Pivot on the Lattice} 
If gainright - gain I .... < 0 then move the atom at site itoos ~ to site iaght and goto step 2. Otherwise, 
the current configuration is a lattice local minimizer. 

Fig. 2. Northby's pivot algorithm. 

Moving an atom from one lattice site to another is called a move (or just a 
pivot) in the Northby algorithm. Each time an atom is added or removed from a 
site the program recalculates from VP the total potential V, and the energy change 
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DV(i) associated with adding or removing another atom at each site. If the full 
Lennard-Jones potential function is used in the lattice search, we can easily 
deduce from the above description that the time complexity for choosing the most 
loosely bound atom is O(n(n -Ncore)) and the time complexity for choosing the 
most tightly binding vacant site is O(n(Nsurr- ( n -  Ncore)) ). Therefore the time 

2 

complexity for each move is O(nNsurr ). Since Nsurf = O(n -~) and that N~ore < n < 
Ncore + NsurZ, the time complexity of each move in Northby's implementation is 

5 

O(n3). 
Since it is likely that the true minimal configurations will have in some sense the 

largest possible number of nearest neighbors, Northby also used nearest-neighbor 
(NN) potential function defined below for lattice search. 

VNN(r )= +100; r < 0 . 8 ,  

= - - 1 ;  0.8~<r~< 1.3,. (5) 

= 0 ;  r > l . 3 ,  

If the NN potential function is used in the lattice search, the time complexity of 
2 

each move in the Northby algorithm becomes O(n ~) for an n-atom cluster 
because the number of nearest neighbors of each atom is bounded by a constant. 

3. Improvements on the Northby Algorithm 

In [11], we have carefully studied Northby's algorithm. We note that the 
interaction matrix VP only speeds up the computation by a constant factor (of 
about 4) at the cost of O(n 2) storage. Therefore, we have dropped the interaction 
matrix. Instead, we have introduced a double precision array CORE(O:Nsurf ) 
which stores the value of Ei,/c z ..... i~jVP(i, j) in CORE(O) and the values of 
E/~Xcor e VP(i, j) in CORE(i) for each i @I surf. With the aid of this si4mple data 
structure, we have reduced the time complexity of each move to O(n~). 

2 

In [24], we have further reduced the time complexity of each move to O(n ~) by 
2 

introducing a new O(n ~) storage data structure. This new data structure is a 
double precision array SURF(Nsurf ). Given an4initial configuration represented by 
i filled the array SURF is initialized in O(n ~) time so that SURF(i)= EjEls163 s u r f  , 

j~iVP(i, j) for each i ~ Isurf. The value of CORE(i) + SURF(i) is the contribution 
f i l l e d  of the atom which is placed at the ith surface lattice point (if i ~ Isurf ) or the 

amount that will be added to the total potential energy if a new atom is to be 
placed at site i of the surface lattice (if i E I ~ ]  "t). After this initialization is done, 
the most loosely bound atom can be found in O(n ~) time; if we delete itoos e from 

2 

iriued and put it in . . . . .  t it requires O(n -~) time to update the array SURF; then s u r f  I surf ' 2 

the most tightly binding vacant site can be computed in O(n3) time; to insert itight 
into "surflfiZted and update the array SURF again takes O(n ~) time. Therefore the time 
complexity per move is reduced to O(n~). The improved pivot algorithm is 
described as follows. 
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Algorithm 3: Modified Northby Pivot Algorithm 
1. {Find the most loosely bound atom} 

�9 . f i l l e d  Fred hoo~ ~ I,u,f such that 

il . . . .  = arg max (CORE(i) + SURF(i)}. 
i ~ r[ i l lgd  

~ -  sury 

(6) 

Let gain l . . . .  be the maximum function value that the maximization problem in (6) achieves at 
i l o o s  e �9 

2. (pick up the most loosely bound atom} 
�9 i f i l l e d  v a c a n t  Drop t l . . . .  from ,,rf and insert it into l,urf . Update the array SURF in the following way: For 

each i ~ l,u e and i ~ i I ..... decrease SURF(i) by v(riloo,e.i), where v(o) is the Lennard-Jones pair 
potential and riloos,.i is the Euclidean distance between site iloo, e and site i on the surface lattice. 

3. (Find the most tightly binding vacant site} 
Find . . . . .  ~"' l t igh t  ~ l s u r f  such that 

i,igh, = arg rain {CORE(i) + SURF(i)}. (7) 
�9 v a c n t  ZElsuCfl 

Let gainaght be the minimum function value that the minimization problem in (7) achieves at 
i t i g h t .  

4, (put the atom at the most tightly binding vacant site} 
�9 v a c a n t  . f i l l e d  Drop t,ish t from l,,rf and insert it into I , , r f .  Update the array SURF in the following way: For 

each i E Isu,f and i ~ itigh,, increase SURF(i) by o(r%h,,i). 
5, (Check for stopping rule} 

If gainash, - gain I .... I> 0 then stop, this is a lattice local minimizer; otherwise, goto step 1. 

Fig. 3. Modified Northby's pivot algorithm. 

Now consider the case where the NN potential function is used in the lattice 

search. We may set up an AVL tree [9] for the values of C O R E ( i )  + S U R F ( i )  for 

all the filled surface lattice points i and an AVL tree for the values of C O R E ( i )  + 

S U R F ( i )  for all the vacant surface lattice points i. After  the AVL trees are set up, 

the most loosely bound atom can be found in O(log n) time. If we delete i~oos e 
l f l l l e d  �9 v a c a n t  from "sur: and put it m I s u , /  , it requires constant time to update the array S U R F  

and only O(log n) time to update the AVL trees since the number of atoms which 

interact with this p i c k e d  up  atom is bounded by a constant. Then the most tightly 

binding vacant site can be found in O(log n) time. To insert itight into -~urrT/alea, it 
takes constant time to update the array S U R F  and O(log n) time to update the 

AVL trees. Therefore the time complexity per move  is reduced to O(log n) for an 

n-atom cluster if the NN potential function is used in the lattice search. I t  should 

be noted that each time a new configuration is generated randomly, O ( n  ~) time is 
2 

required to initialize the array S U R F  and O ( n  ~ log n) time to initialize the AVL 

trees. 

The reduction of time complexity of each move discussed above makes the 
Northby algorithm for lattice search more efficient. In the following, we are going 

to modify Northby's  strategy for relaxation of lattice local minimizers. 
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Out of curiosity, we have made a small change in the Northby algorithm by 
making a relaxation whenever a new lattice local minimizer with a better potential 
function value is found. With this modification, a lower energy configuration was 
found for n = 134. Northby reported -781.989 as the putative global minimum 
for n = 134, which was found by the relaxation of an IC lattice local minimizer 
(under the NN potential function). The new putative global minimum that we 
have found is -782.206 which was found by the relaxation of an IC lattice local 
minimizer. The configuration was found by relaxation of an IC lattice local 
minimizer with a LJ potential function value of -732.376. However, the best 
known lattice local minimizers have a value of -732.616, all of them relax to local 
minimizers with a potential function value of -781.476. 

This fact indicates that in some cases, the relaxation o f  a lattice local minimizer 
with a worse potential function value may lead to a local minimizer with a better 

potential function value. Therefore we propose the following modified Northby 
algorithm for Molecular Conformation. 

Algorithm 4: Modified Northby Algorithm for Molecular Conformation 
1. Fix the base lattice to either the IC lattice or the FC lattice. Choose the lattice search potential 

function as either the full Lennard-Jones potential function or the nearest-neighbor potential 
function. 

2. Repeat 
2.1. randomly generate a lattice configuration; 
2.2. pivot to a lattice local minimizer; 
2.3. relax this lattice local minimizer with the full LJ potential function; 

Until the lowest potential function value has been repeated for 250 times. 

Fig. 4. Modified Northby algorithm for Molecular Conformation. 

Algorithm 4 surely requires more time than Algorithm 1 because it performs 
more work. Therefore we have used Algorithm 4 in addition to Algorithm 1 and 
changed the stopping criterion in step 2 to 60 times instead of 250 times to save 
computer time. With Algorithm 4, lower energy configurations were found for 
n = 65, 66, 75, 76, 77 and 134. Computational results will be presented in the next 
section. 

4. Computational Results 

The algorithm was implemented on the Cray-XMP at the Minnesota Supercompu- 
ter Center (MSC) in Fortran 77 and compiled with the cft77 version 4.0 compiler 
in single-precision (64-bit). Relaxations are performed using the Truncated 
Newton code of S.G. Nash. For information on the Truncated Newton algorithm, 
readers are referred to [14,15]. 
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For each problem instance (fix a cluster size, lattice type, and potential 
function), the algorithm never requires more than 3 minutes of CPU time on the 
Cray-xmp. Therefore the problems are solvable in interactive mode (3 minutes of 
CPU time). For this reason, timing issues are not reported in the tables. 

Putative global minima are reported in Table I and Table II for 13 < n ~< 55 and 
56 ~< n ~< 147, respectively. Lattice searches are divided into four categories: FC 
lattice NN potential, FC lattice LJ potential, IC lattice NN potential, and IC 
lattice LJ potential. In these  tables, an x means that a putative global minimizer 
was produced by performing a lattice search in the corresponding category 
followed by relaxation; an o means that the lattice search in the corresponding 
category does not lead to a putative global minimizer; an. means that this 
category of lattice search does not exist (for FC lattices). 

The differences in results obtained by Northby Algorithm and by Modified 
Northby Algorithm are presented in Table III. Note that for n = 65, 66, 75, 76, 
77, and 134, lower energy configurations are found. For other values of n in Table 
III; the putative global minima are found in more categories. 

The optimal configuration for the 76-atom duster is plotted in Figure 5 in the 
appendix. It has a potential energy function value of -402.385. The sub-optimal 
configuration for 76-atom duster with potential function value -402.177 is plotted 
in Figure 6 in the appendix. The difference in the two configurations is hard to 
tell. Therefore, we present their xyz  coordinates in Tables IV and V in the 
appendix. 

size ene rgy  F C  l a t t i c e  IC  l a t t i c e  

n Vn N N  L J  N N  LJ  
13 :44 .327  x x x x 
14 -47.845 x x x x 
15 -52.323 x x x x 
16 -56.816 x x o o 
17 -61.318 x o o o 
18 -66.531 x x o o 
19 -72.660 x o x x 
20 - 7 7 . 1 7 7  x o o o 

21 -81.685 x o o o 
22 -86.810 x o o o 
23 -92.844 x o o o 
24 -97.349 x o o o 
25 -102.373 x o o o 
26 -108.316 x o o o 
27 -112.874 x o o o 
28 -117.822 x o o o 
29 -123.587 x o o o 
30 -128.287 x o o o 
31 -133.586 o o x x 
32 -139.636 o o x x 
33 -144.843 o o x x 
34 -150.045 o o x x 

size ene rgy  F C  l a t t i c e  i C  l a t t i c e  
n V,, N N  L J  N N  L J  

35 -155.757 
36 -161.825 
37 -167.034 
38 -173.134 
39 -180.033 
40 -185.250 
41 -190.536 
42 -196.278 
43 -202.365 
44 -207.689 
45 -213.785 
46 -220.680 
47 -226.012 
48 -232.200 
49 -239.092 
50 -244.550 
51 -251.254 
52 -258.230 
53 -265.203 
54 -272.209 
55 -279.248 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

X X 

X x 

X o 

x X 

x x 

x . X 

x x 

x x 

x X 

X x 

x x 

x x 

x x 

x x 

x x 

X x 

X X 

x x 

x X 

X X 

x x 

Table 1: Putat ive  global minima for 13 _< n < 55.  
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size e n e r g y  F C  l a t t i c e  IC  l a t t i c e  

n V,, N N  L J  N N  L J  
size ene rgy  F C l a t t i c e  I C l a t t i c e  

n V, N N  LJ  N N  L J  
56 -283.643 o o x x 
57 -288.343 x x o o 
58 -294.378 x x o o 
59 -299.738 x o o o 
60 -305.875 x x o o 
61 -312.009 x x o o 
62 -317.354 x o o o 
63 -323.490 x x o o 
64 -329.620 x x o o 
65 -334.972 x o o o 
66 -341.111 x x o o 
67 -347.252 x x o o 
68 -353.395 x o o o 
69 - 3 5 ~ 7 2 6  x o o o 
70 -366.892 x x o o 
71 -373.350 x o o o 
72 -378.524 x o o o 
73 -384.789 x o o o 
74 -390.908 x o o o 
75 -396.239 x o o o 
76 -402.385 x o o o 
77 -408.518 x o o o 
78 -414.681 o o x x 
79 -421.811 o x o o 
80 -428.084 x o o o 
81 -434.344 x o o o 
82 -440.550 o o x x 
83 -446.924 o o x x 
84 -452.657 o o x x 
85 -459.656 o x o o 
86 -465.384 o o x x 
87 -472.098 o o x x 
88 -478 .935  o o x x 
89 -486.054 o o x x 
90 -492.434 o o x x 
91 -498.811 o o x x 
92 -505.185 o o x x 
93 -510.878 o o x x 
94 -517.264 o o x x 
95 -523.640 o o x x 
96 -529.879 o o x x 
97 -536.681 o o x x 
98 -543.547 o o x x 
99 -550.667 o o x x 

100 -557.040 o o x x 
101 -563.411 o o x x 

o o 

o o 

0 o 

o 0 

0 0 

o o 

0 o 

0 0 

0 0 

o o 

0 0 

o 0 

o o 

o o 

0 o 

o 0 

o o 

o 0 

o o 

0 0 

o 0 

o o 

o 0 

0 o 

o o 

102 -569.278 
103 -575.659 
104 -582.038 
105 -588.267 
106 -595.061 
107 -601.912 
108 -609.033 
109 -615.411 
110 -621.788 
111 -628.068 
112 -634.875 
113 -641.700 
114 -648.833 
115 -655.636 
116 -662.809 
117 -668.283 
118 -674.770 
119 -681.419 
120 -687.022 
121 -693.820 
122 -700.939 
123 -707.802 
124 -714.921 
125 =721,303 
126 -727.350 
127 -734.480 
128 -741.332 
129 -748.461 
130 -755.271 
131 -762.442 
132 -768.042 
133 -775.023 
134 -782.206 

135 -790.278 
136 -797.453 
137 -804.631 
138 -811.813 
139 -818.994 
140 -826.175 
141 -833.359 
142 -840.539 
143 -847.722 
144 -854.904 
145 -862.087 

146 -869.273 
147 -876.461 

X x 

x X 

X X 

X x 

X X 

X x 

X X 

x X 

X X 

X X 

X X 

X X 

X X 

X X 

X X 

X X 

x X 

X X 

X X 

X X 

X X 

X x 

X X 

X X 

X X 

X X 

X X 

X x 

X X 

X X 

X O 

O x 

O X 

O X 

O X 

O X 

O X 

X X 

X X 

X X 

X X 

X X 

X X 

X X 

X X 

X X 

Tab le  2:  P u t a t i v e  g l o b a l  m i n i m a  f o r  56 < n < 147.  

N o r t h b y  A l g o r i t h m  
size e n e r g y  F C  l a t t i c e  IC  l a t t i c e  

n f/.n N N  L J  l Y ~  L J  
14 -47 .845  x o 
15 -52.323 x o 

19 -72.660 x o 
50 -244 .550  x o 

65 -334 .915  o x o o 
66 -341 .043  o x o o 
67 -347.252 o x o o 
75 -396.037 o x o o 
76 -402.177 o x o o 
77 -408.463 o o x x 

134 -781.989 x o 
139 -818.994 o x 

Modif ied  N o r t h b y  A l g o r i t h m  
s,ze ene r~  F C  l a t t i c e  I C  l a t t i c e  

n f/ N l Y  L J  IWIV LJ  
14 -47.845 x x x x 
15 -52.323 x x x x 
19 -72.660 x o x x 
50 -244.550 x x 
65 -334.972 x o o o 
66 -341.111 x x o o 

67 -347.252 x x o o 
75 -396,239 x o o o 
76 -402.385 x o o o 
77 -408.518 x o o o 

134 -782.206 o x 
139 -818.994 x x 

Tab le  3: D i f f e r e n c e  i n  r e l u l t s  f r o m  d i f f e r e n t  a l g o r i t h m s .  
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5. Conclusions 

In this paper, we have introduced simple data structures into the Northby 
algorithm for lattice search which greatly reduce the time complexity of the 
original algorithm. With this improvement, we were able to compute the ground 
states of Lennard-Jones clusters much faster. We have also modified the Northby 
algorithm for Molecular Conformation by relaxing every lattice local minimizer 
found in the process. With this improved algorithm, lower energy configurations 
were found for n = 65, 66, 75, 76, 77 and 134. These findings also show that in 
some cases, the relaxation of a lattice local minimizer with a worse potential 
function value may lead to a local minimizer with a better potential function value. 
Since these cases are less than 5% of the total cases, we still believe that in most 

o f  the cases, the relaxation of a global lattice minimizer will results in a 
configuration with a lower energy than the relaxation of a non-global lattice local 
minimizer. 

It should be noted that the search for a lattice global minimizer can be 
formulated as a discrete optimization problem. We need to assign n atoms to 
m ~>n lattice points. Corresponding to each assignment, there is a potential 
energy function value. The lattice global minimizer corresponds to the assignment 
which has the lowest potential energy function value. This problem could be 
solved by existing techniques for quadratic assignment problems. It can also be 
viewed as a set partitioning problem and solved using techniques for set 
partitioning. 
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Appendix 

A. THE CONSTRUCTION OF IC AND FC LATTICES 

The icosahedral lattice [3,7,16] introduced by Mackay can be described as 20 
slightly flattened tetrahedrally shaped fee units with 12 vertices on a sphere 
centered at the origin. The ratio between the interatomic spacing in the 20 
equilateral outer faces and the radial lines connecting the 12 vertices with the 
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2 which is approximately 1.05146. origin is ~r ' 
1 + cos ~- 

For the IC lattice, the total number of the lattice on each layer is 1, 12, 42, 
92 . . . .  ,10i 2 + 2 , . . . .  Therefore the number of lattice points in the sequence of 
closed shell IC lattice is 1, 13, 55, 1 4 7 , . . . ,  1 + (10i 3 + 15i 2 + 1 1 0 / 3 , . . . .  

The FC lattice consists of a smaller IC lattice enclosed by a layer of stacking 
fault icosahedral shell. This shell has 12 vertices and 20 facets as described above. 
However,  it has fewer filling lattice points on each facet. These lattice points are 
located at the stacking fault positions of the IC lattice shell. The number of lattice 
points on the outer layer of an FC lattice is 1, 12, 32, 72, 1 3 2 , . . . ,  1 0 i ( i  - 1)  + 

1 2 , . . . .  Therefore the number of lattice points in the sequence of closed shell FC 
lattice is 1, 13, 45, 127 . . . . .  11 + (10i 3 + 15i 2 - 1 9 0 / 3 , . . . .  

Figure 1 of [16] best describes how each of the facets are filled with other lattice 
points for both the IC shell and the FC shell. A short fortran subroutine for 
constructing the icosahedral lattice is attached in the following. 

subroutine icgen(n, x, y, z) 
integer n 
double precision x(n), y(n), z(n) 

This subroutine generates the coordinates for an icosahedron 
lattice with n points 

n is an integer INPUT variable 
on entry, n is the number of points in an icosahedron lattice 
on exit, n is not changed 

z, y, z are double precision OUTPUT arrays 
on entry, they need not be specified 
on exit, they contain the x-y-z coordinates of the lattice 

C * ~ * ~  
integer i ,  j, k, point, oldpoint, newpoint, ir 
double precision cccc, ssss, angle, cosalpha, sinalpha 
double precision cc, ss, r, xl, yl, zl, x2, y2, z2, x3, y3, z3 

a n g l e  = - 2 . 0 " 3 . 1 4 1 5 9 2 6 / 5 . 0  
cccc  = c o s ( a n g l e )  
SSSS = sin(angle) 
cc = cos(angle/2.0) 
ss = sin(angle/2.0) 
cosalpha = ccl(1.0 + cc) 
sinalpha = sqrt(1.0 - cosalpha*cosalpha) 

point = 1 
x(1) = 0.0 
y(t) = o.0 
z(1) = 0.0 
oldpoint = 1 

r=l.0 
00010 ir = int(r) 

xl=O.O 
yl=r 
zl=O.O 
x2 = r*sinalpha 
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y2 = r*cosalpha 
z2 = 0.0 
x3 = coccyx2 + ssss*z2 
y3 = y2 
z3 =-ssss*x2 § CCCC~Z2 
do 00030, i = O, ir-1 

do 00020, j = I, ir-i 
point = point § i 
x(point) = real(i)/r*xl + real(j)/r*x2 + real(r-i-j)/r*x3 
y(point) = real(i)/r*yl + real(j)/r*y2 + real(r-i-j)/r*y3 
z(point) = real(i)/r*zl + real(j)/r*z2 § real(r-i-j)/r*z3 

00020 continue 
00030 continue 

xl = cc*x2 + ss*z2 
yl =-y2 
zl =-ss*x2 + cc*z2 
do 00050, i = 1, ir 

do 00040, j = O, ir-i 
point = point § I 
x(point) = real(i)/r*xl § real(j)/r*x2 § real(r-i-j)/r*x3 
y(point) = real(i)/r*yl § real(j)/r*y2 § real(r-i-j)/r*y3 
z(point) = real(i)/r*zl § real(j)/r*z2 § real(r-i-j)/r*z3 

00040 continue 
00050 continue 

x2 = cccc*x1 § ssssSzl 
y2 = yl 
z2 =-ssss*xl + cccc*zl 
do 00070, i = 1, ir-1 

do 00060, j = I, ir-i 
point = point + I 
x(point) = real(i)/r*xl § real(j)/r*x2 § real(r-i-j)/r*x3 
y(point) = real(i)/r*yl + real(j)/r*y2 + real(r-i-j)/r*y3 
z(point) = real(i)/r*zl + real(j)/r*z2 + real(r-i-j)/r*z3 

00060 continue 
00070 continue 

x3 = 0.0 
y3 =-r 
z 3  = 0 . 0  
do 00090, i - 1, ir-1 

do 00080, j = O, ir-i-1 
point = point § i 
x(point) = real(i)/r*xl § real(j)/r*x2 § real(r-i-j)/r*x3 
y(point) = real(i)/r*yl + real(j)/r*y2 § real(r-i-j)/r*y3 
z(point) = real(i)/r*zl § real(j)/r*z2 § real(r-i-j)/r*z3 

00080 cont inue 
00090 continue 

newpoint = point 

do 00110, k = 1, 4 
do 00100, i = oldpoint + i, newpoint 

point = point § 1 
x(point) = cos(k*angle)*x(i) § sin(k*angle)*z(i) 
y(point) = y(i) 
z(point) =-sin(k*angle)*x(i) § cos(k*angle)*z(i) 

00100 continue 
00110 contSnue 

point = point § I 
x(point) = 0.0 
y(point) = r 
z(point) = 0.0 
point = point § 1 
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x ( p o i n t )  = 0 . 0  
y ( p o i n t )  = - r  
z ( p o i n t )  = 0 . 0  
oldpoint = point 
if (oldpoint .it. n) ~hen 

r=r+l.0 
goto 00010 

endif 
99999 r e t u r n  

end 

Fig. 5. New result for the  7( 

) 
-a tom cluster, energy = -402.385.  

Fig. 6. Nor thby 's  result for the  76-atom cluster, energy = - 4 0 2 . 1 7 7 .  
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B. CONFIGURATIONS FOR T H E  76-ATOM CLUSTER 

In this section, we provide information for the configurations for the 76-atom 
cluster. Both the coordinates and the plots are provided here. Note that the two 
configurations are not the same and that one can not be obtained by performing 
reflection or rotation. They have different potential energy function values. 

i z i  lli z i . .  i 

1 0.002 -0.001 0,002 39 
2 0.838 0.408 0.013 40 
3 0.680 -0.423 0.502 41 
4 0.256 0.409 0.807 42 
5 -0.255 -0.418 0.778 43 
6 -0.680 0.411 0.502 44 
7 -0.839 -0.417 0.005 45 

i 

8 -0.684 0.414 -0.479 I 46 
9 -0.268 -0.426 -0.783 47 

10 0.255 0.410 -0.789 48 
11 0.673 -0.434 -0.485 49 
12 -0.003 0.930 0.016 50 

13 0.017 -0.937 0.016 51 

14 1.119 0.839 0.842 52 

15 1.702 0.836 0.019 53 
16 0.856 1.377 0.023 54 

17 0.946 -0.020 1.346 55 
18 1.552 -0.016 0.527 56 

19 1.365 -0.866 1.030 57 
20i 0.407 -0.857 1.311 58 

21 0.697 -1.401 0.533 59 
22 -0.439 0.831 1.346 60 

23 0.509 0.821 1.648 61 

24 0.257 1.373 0.845 62 

25 -0.947 -0.027 1.310 63 
26 -0.014 -0.027 1.616 64 

27 -0.518 -0.843 1.567 65 
28 -1.106 -0.859 0.813 66 
29 -0.262 -1.377 0.820 67 
30 -1.399 0.845 0.024 68 
31 -1.384 0.823 1.030 69 
32 -0.701 1.375 0.533 70 

33 -1.564 -0.009 -0.484 71 
34 -1.557 -0.018 0.527 72 
35 -1.706 -0.855 0.020 73 
36 -1.137 -0.876 -0.789 74 
37 -0.837 -1.374 0.030 75 
38 -0.439 0.848 -1.308 76 

zl  Yi zi 
-1.389 0.845 -0.981 
-0.702 1.382 -0.482 
-0.013 -0.020 -1.621 

-0.976 -0.014 -1.300 

-0.557 -0.870 -1.591 
0,408 -0.889 -1.304 

-0.275 -1.383 -0.766 
1.121 0.844 -0.804 

0.519 0.838 -1.612 
0'261 1.379 -0.800 
1.548 -0.020 -0.490 
0.949 -0.021 -1.314 
1.365 -0.876 -0.992 
1.379 -0.879 0.017 
0,688 -1.414 -0.494 

-0.004 1.895 0.025 
0.021 -1.903 0.043 

-0.741 r "2.211 "0.468 
"0.225 0.614 2.299 
"1.013 --1.651 1.400 
"1.889 0.071 1.463 
--1.600 "1.660 0"578 
"1.008 --1.720 --1.292 
"1.181 0.615 1.985 
"0"053 "1.708 --1"656 
0.127 "0.773 2"268 

-1.451 -0.777 1.746 

1.084 -0.777 1.987 
-0.786 -1.276 2.359 
-1.593 -1.708 -0.464 
-2.051 -0.786 0.950 
-0.035 -1.644 1.754 

0.231 -2.187 0.965 
0.921 -1.653 1.471 
0.202 -2.225 -0.858 

-0.747 -0,237 2.267 
0.653 0.074 2.299 

-0.751 -2.183 0.579 

Table IV. Optimal configuration for 76-atom duster ,  energy = -402.385. 
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i z i  Yi zl i z l  Yl zl 

1 -0.003 -0.001 0.002 39 -1.383 0.816 -0.982 
2 0,827 0.423 -0.004 40 -0.713 1.353 -0.507 
3 0.662 -0.422 0.493 41 -0.018 0.011 -1.641 
4 0.248 0.423 0.795 42 -0.961 -0.002 -1.300 
5 -0,279 -0.414 0.795 43 -0.521 -0.835 -1.631 
6 -0.676 0.428 0.491 44 0.424 -0.852 -1.333 
7 -0.837 -0.419 0.002 45 -0.281 -1.376 -0.835 
8 -0.679 0.402 -0.482 46 1.104 0,868 -0.826 
9 -0.254 -0.414 -0.801 47 0.495 0.859 -1.627 

10 0.249 0.421 -0.798 48 0.234 1.391 -0.829 
11 0.669 -0.418 -0.495 49 1.540 0.005 -0.510 
12 -0.010 0.937 -0.006 50 0.943 0.007 -1.328 
13 -0.017 -0.937 -0.007 51 1.368 -0.849 -1.005 
14 1.109 0.867 0.811 52 1.372 -0.862 -0.001 
15 1.689 0.859 -0.007 53 0.673 -1.389 -0.514 
16 0.839 1.398 -0.014 54 -0.029 1.906 -0.020 
17 0.940 0.000 1.322 55 -0.039 -1.904 -0.022 
18 1.536 0.000 0.503 56 -2.087 -0.713 -0.891 
19 1.354 -0.858 1.004 57 -1.930 0.136 -1.392 
20 0.398 -0.859 1.321 58 -1.669 -1.606 -0.611 
21 0.666 -1.395 0.500 59 -0.284 0.753 -2.244 
22 -0.442 0.875 1.316 60 -0.992 2.168 -0.074 

23 0.512 0.860 1.616 61 -2.376 -0.137 -0.009 
24 0.246 1.398 0.804 62 -2.218 0.711 -0.511 

25 -0.982 0.022 1.309 63 -1.980 0.185 1.332 

26 -0.026 0.008 1.629 64 -1.574 -0.667 1.666 
27 -0.574 -0.838 1.614 65 -1.687 1.635 0.441 

28 -1.150 -0.849 0.806 66 -1.085 -1.600 -1.406 

29 -0.299 -1.384 0.807 67 -0.810 -0.116 -2.244 

30 -1.383 0.841 -0.008 68 -2,212 0.722 0.489 
31 -1.377 0.874 0.989 69 -0.122 1.633 -1.728 
32 -0.713 1.398 0.487 70 -1.669 1.620 -0.549 

33 -1.546 -0.008 -0.498 71 -1.221 0.726 -1.921 
34 -1.537 0.011 0.486 72 -0.831 -2.151 -0.610 

35 -1.704 -0.846 -0.003 73 -0.389 2.166 -0.912 
36 -1.113 -0.835 -0.811 74 -2.144 -0.657 0.845 

37 -0.884 -1.382 -0,011 75 -1.058 1.617 -1.398 

38 -0.455 0.838 -1.299 76 -1.495 -0.709 -1.704 

Table V. Sub-optimal configuration for 76-atom cluster, energy = -402.177 
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