Improvement on the Northby Algorithm for
Molecular Conformation: Better Solutions

GUOLIANG XUE
Department of Computer Science and Electrical Engineering, The University of Vermont,
Burlington, VT 05405, U.S.A. (E-mail: xue@cs.uvm.edu)

(Received: 20 October 1992; accepted: 4 July 1993)

Abstract. In 1987, Northby presented an efficient lattice based search and optimization procedure to
compute ground states of n-atom Lennard—Jones clusters and reported putative global minima for
13=n=150. In this paper, we introduce simple data structures which reduce the time complexity of
the Northby algorithm for lattice search from O(n3) per move to O(n3) per move for an n-atom
cluster involving full Lennard—Jones potential function. If nearest neighbor potential function is used,
the time complexity can be further reduced to O(log n) per move for an n-atom cluster. The lattice
local minimizers with lowest potential function values are relaxed by a powerful Truncated Newton
algorithm. We are able to reproduce the minima reported by Northby. The improved algorithm is so
efficient that less than 3 minutes of CPU time on the Cray-XMP is required for each cluster size in the
above range. We then further improve the Northby algorithm by relaxing every lattice local minimizer
found in the process. This certainly requires more time. However, lower energy configurations were
found with this improved algorithm for n = 65, 66, 75, 76, 77 and 134. These findings also show that in
some cases, the relaxation of a lattice local minimizer with a worse potential function value may lead to a
local minimizer with a better potential function value.
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1. Introduction

The minimization of potential energy functions of clusters of atoms is known as
the molecular conformation problem. Global minimizers (or ground states) of
potential energy functions are of great interest to researchers in chemistry,
biology, physics, and optimization. One of the fundamental problems in molecu-
lar conformation is the minimization of the pure Lennard—Jones potential
function [5]. This problem is very hard to solve because it has many local
minimizers. Hoare [7] has claimed that the number of local minimizers of an
n-atom cluster grows as fast as the the function O(e”z). Nonetheless, many papers
have been published on computational methods [1,2,4,6,7,8,10,12,13,16-23] and
putative global minima for cluster sizes as large as n = 150 have been reported
[7,16,19].

The most successful algorithm for minimizing Lennard—Jones clusters has been
Northby’s algorithm. Northby makes use of the IC and FC lattices (which are
described in detail in Appendix A) in finding good starting points for continuous
minimization. Suppose that we want to find the global minimizer for an r-atom
cluster. We may first find an IC or FC lattice with m = n points. We may then
assign the n atoms to n of the m lattice points. With each such assignment, there
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is a corresponding configuration of the cluster and an energy function value. We
will call such a configuration a lattice configuration. Two lattice configurations are
said to be neighbors if one can be obtained from another by reassigning an atom
to an unassigned lattice point. A lattice local minimizer is a lattice configuration
whose corresponding energy value is not greater than all of its neighbor’s. The
Northby algorithm first finds a set of lattice local minimizers and then relaxes
those lattice minimizers by performing continuous minimization starting with
those lattice minimizers. With this algorithm, Northby is able to publish putative
global minima for cluster sizes ranging from 13 to 150 [16]. These values are
believed to be global minima and serve as a standard to test algorithms for
molecular conformation. ‘

In Northby’s algorithm, the lattice search part solves a discrete optimization
problem by moving from one lattice configuration to another (neighboring) lattice
configuration with a better function value. We call each of these move a pivor (or
just a move). In Northby’s implementation [16], each move takes O(n3) for a
cluster with n atoms. In [24], we have reduced the time complexity of each move
to O(n3) for a cluster with # atoms. Therefore, with the supercomputer CM-5 and
a two-level simulated annealing algorithm, we have been able to solve the lattice
search problem for cluster sizes as large as 100,000. ‘

In this paper, we make two additional improvements on the Northby algorithm
for Molecular Conformation problem. First, we note that by employing AVL trees
[9], the time complexity per move can be reduced to O(logn) for an n-atom
cluster if nearest neighbor potential is used. This improvement, combined with
the improvement which we have made in [24], makes the Northby algorithm very
fast. Less than 3 minutes of CPU time on the Cray-XMP is required for each
cluster size in the studied range. Second, we relax every lattice local minimizer
found instead of relaxing only those lattice local minimizers with best known
potential function value. In this case, the algorithm requires more time. However,
lower energy configurations were found with this improved algorithm for n = 65,
66, 75, 76, 77 and 134. These findings also show that in some cases, the relaxation
of a lattice local minimizer with a worse potential function value may lead to a local
minimizer with a better potential function value. ’
 The rest of this paper is organized as follows. In Section 2, we describe the
Molecular Conformation problem and the Northby algorithm. In Section 3, we
discuss improvements on the Northby algorithm. In Section 4, computational
results on the Cray-XMP are presented. Concluding remarks are given in Section
3.

2. Molecular Conformation and the Northby Algorithm

Given n atoms (points), p,, P, - ., P,, in 3-dimensional Euclidean space, the
total 2-body potential energy function is defined as

n

V.(p)= 2 21 le(”pj -pilo) 1)

cj=2i=
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where v, ,(r) is the Lennard—Jones potential function ([5]) defined as

1 2
v ()= 6 (2)

The problem is to find a configuration (positions for the n points) such that the
total potential energy function V, (p) is minimized.

Finding a global minimizer of V,(p) is extremely difficult except for very small
cluster sizes. The difficulty is due to the fact that while it is always possible with a
supercomputer and a local minimization algorithm (e.g. quasi-Newton method) to
relax any reasonable initial configuration to some local minimizer, unless the
starting configuration is in the catchment basin of the global minimizer, the
minimizer found may not be the global minimizer. Hoare has claimed that the
number of local minimizers in the potential energy surface of an n-atom Lennard-
Jones cluster is about O(e"z). Thus, it is impractical to perform an undirected
search for all local minimizers of the potential function in order to find the global
minimizer, except for very small clusters.

Chemical physicists have learned from previous research that the “ground
states” of Lennard—Jones clusters exhibit certain kind of lattice structures. So far,
the most successful algorithms for computing ground states of Lennard—Jones
clusters are based on lattice search followed by local minimization from the lattice
minimizers, represented by the Northby algorithm [16]. As stated in [11], a
critical assumption for lattice search based algorithms is that a well-defined set of
lattice structures contains at least one initial cluster configuration which relaxes to
the ground state. As described and supported by computational results in [16], the
IC and FC lattices (see Appendix A for definitions and descriptions of these
lattices) are well-defined lattice structures for the pure Lennard-Jones clusters. It
is believed that in most of the cases, the relaxation of a global lattice minimizer will
results in a configuration with a lower energy than the relaxation of a non-global
lattice local minimizer.

Northby’s algorithm for Molecular Conformation can be summarized as
follows:

Algorithm 1: Northby’s Algorithm for Molecular Conformation
1. Fix the base lattice to either the IC lattice or the FC lattice. Choose the lattice search potential
function as either the full Lennard—Jones potential function or the nearest-neighbor potential
function.
2. Repeat
2.1. randomly generate a lattice configuration;
2.2. pivot to a lattice local minimizer;
2.3. store all lattice local minimizers with the best known potential function value and
discard those with worse potential function values;
Until the lowest potential function value has been repeated for 250 times.
3. Relax each of the lattice local minimizers stored in step 2 with the full Lennard-Jones
potential function.

Fig. 1. Northby’s algorithm for Molecular Conformation.
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~ Suppose that we want to find a lattice local minimizer of an n-atom cluster. Let
us assume that we have chosen one of the two types of lattices for the lattice
minimization. First, find the largest IC lattice which contains fewer than n points
(if one of the IC lattices has exactly n points, we simply put all » atoms on the
lattice points of that lattice and quit). Call this IC lattice the core and let N,
and I_,,, be the number of points in this IC lattice and the index set of this IC

core

lattice, respectively. Next, find the next layer of IC (or FC) lattice which contains
N,,,; (surface) points. Let [, be its index set. If N,,,, + N,,,; =n, we simply put

core

all n atoms on the lattice points of the lattice and quit.

An initial configuration can be constructed by filling N,,,, atoms into the core

lattice and randomly put the remaining (n ~ N,,,.) atoms onto the N, surface
lattice sites. This is equivalent to partitioning the index set . to two subsets

. . sur;
17" and 2™ such that |I75¢'| =n — N,,,, and that site i € L,,,, is filled with an

atom if and only if i € 174

surf *

Northby [16] computes the interaction matrix VP(i, ), the pair interaction
between an atom on site i and one on site j at the very beginning of the algorithm
and stores it as a lookup table. After this is done, Northby’s pivot algorithm for
finding a lattice local minimizer can then be summarized as follows.

Algorithm 2: Northby’s Pivot Algorithm for Lattice Search
1. {Find the most loosely bound atom}
Find i,,,,, € ¢ such that

surf

lloose

=arg max { > VPG, )+ 2 VPG, j)}. , A3)

ierffled Niele, jerfified, =i

Site i,,,,, is called the most loosely bound filled site and the atom at that site is called the most
loosely bound atom. Let gain, ., be the maximum function value that the maximization problem
in (3) achieves at i, ,,. Apparently, this is the total contribution that the atom at site i,,,,, has
towards the total potential energy.

2. {Find the most tightly binding vacant site}

Find i, €157 such that
Lgne = 0rg min { > VPG, )+ > VP(i, j)} . 4)
IETH™ Liel,,, jerfiled juy o
Site i, is called the most tightly binding vacant site. Let gain,,,, be the minimum function value

that the minimization problem in (4) achieves at i,,,,. This is the new contribution that the atom
at site i,,,,. has towards the total potential energy when moved to site i,

3. {Pivot on the Lattice)}
If gain,.,,, — 8ain,,,,, <0 then move the atom at site i, to site i,,,, and goto step 2. Otherwise,
the current configuration is a lattice local minimizer.

Fig. 2. Northby’s pivot algorithm.

Moving an atom from one lattice site to another is called a move (or just a
pivor) in the Northby algorithm. Each time an atom is added or removed from a
site the program recalculates from VP the total potential V, and the energy change
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DV(i) associated with adding or removing another atom at each site. If the full
Lennard-Jones potential function is used in the lattice search, we can easily
deduce from the above description that the time complexity for choosing the most
loosely bound atom is O(n(n — N,,,.)) and the time complexity for choosing the
most tightly binding vacant site is O(n(N,,,; — (n — Cm))) Therefore the time

O(n3) and that N, _<n<

core

complexity for each move is O(nN,,,(). Since N,

surf

Ncm + N, the time complexity of each move in Northby’s implementation is
0(n3)

Since it is likely that the true minimal configurations will have in some sense the
largest possible number of nearest neighbors, Northby also used nearest-neighbor
(NN) potential function defined below for lattice search.

vyn()=+100; r<0.8,
=-1; 0.8<sr=123,. %)
=0; r>1.3,

If the NN potential function is used in the lattice searzch, the time complexity of
each move in the Northby algorithm becomes O(n?) for an n-atom cluster
because the number of nearest neighbors of each atom is bounded by a constant.

3. Improvements on the Northby Algorithm

In [11], we have carefully studied Northby’s algorithm. We note that the
interaction matrix VP only speeds up the computation by a constant factor (of
about 4) at the cost of O(n?) storage. Therefore, we have dropped the interaction
matrix. Instead, we have introduced a double precision array CORE(0:N,,,,)
which stores the value of £, i, .., VP(,j) in CORE(0) and the values of
Lier,, VPG, J) in CORE() for each i €1, With the aid of this simple data
structure, we have reduced the time complexity of each move to O(nﬂ) s

In [24], we have further reduced the time complexity of each move to O(n?) by
introducing a new O(n3) storage data structure. This new data structure is a
double precision array SURF(N,,,;). Given an Jnitial configuration represented by
I ’:ﬁfﬁ;d, the array SURF is initialized in O(nﬂ) time so that SURF(i) = Z],E,f,u;d
j=iVP(, J) for each i €L, .. The value of CORE(i) + SURF(i) is the contribution
of the atom which is placed at the ith surface lattice point (if iEI’:fZ;d) or the
amount that will be added to the total potential energy if a new atom is to be
placed at site i of the surface lattice (if i €7 :,’jfjf ™). After this initialization is done,
the most loosely bound atom can be found in O(n 3) time; if we delete i,,,,, from
1 ’;"ﬁ;d and put it in I}, it requires O(n?) time to update the array SURF; then
the most tightly binding vacant site can be computed i in O(n3) time; to insert i,
into / ’:’u’ﬁj‘;d and update the array SURF again takes O(nﬂ) time. Therefore the time
complexity per move is reduced to O(n3) The improved pivot algorithm is
described as follows.
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Algorithm 3: Modified Northby Pivot Algorithm
1. {Find the most loosely bound atom}
Find i,,,,, € I"%** such that

surf

lioose = arg max {CORE(i)+ SURF(i)} . (6)
ierfiig?

Let gain,, ., be the maximum function value that the maximization problem in (6) achieves at
lloose'

2. {pick up the most loosely bound atom}
Drop iy,,, from I/, and insert it into I’a-r". Update the array SURF in the following way: For
each i €[, and i #i,,,, decrease SURF(i) by v(r; ), where v(®) is the Lennard-Jones pair
potential and r, _, is the Euclidean distance between site i,,,,, and site i on the surface lattice.

3. {Find the most tightly binding vacant site}

Find i, €I'°?™ such that

tight surf
Iy =arg min {CORE()+ SURF(i)} . @)
ieryagpm
Let gain,,, be the minimum function value that the minimization problem in (7) achieves at

gt
4. { ;ut the atom at the most tightly binding vacant site}
Drop i, from I);™ and insert it into I%,". Update the array SURF in the following way: For
each i€ [, and i #i,,,, increase SURF(i) by v(r, , ).
5. {Check for stopping rule}

If gain,,,,, — gain,,.. =0 then stop, this is a lattice local minimizer; otherwise, goto step 1.

tigl

tight

Fig. 3. Modified Northby’s pivot algorithm.

Now consider the case where the NN potential function is used in the lattice
search. We may set up an AVL tree [9] for the values of CORE(i) + SURF(i) for
all the filled surface lattice points i and an AVL tree for the values of CORE(i) +
SURF(i) for all the vacant surface lattice points i. After the AVL trees are set up,
the most loosely bound atom can be found in O(logn) time. If we delete i,,,,
from [ ’:'u'i;d and put it in I/, it requires constant time to update the array SURF
and only O(log n) time to update the AVL trees since the number of atoms which
interact with this picked up atom is bounded by a constant. Then the most tightly
binding vacant site can be found in O(logn) time. To insert i, into [ ’:‘;ﬁ;d, it
takes constant time to update the array SURF and O(log#) time to update the
AVL trees. Therefore the time complexity per move is reduced to O(log n) for an
n-atom cluster if the NN potential function is used in the lattice search. It should
be noted that each time a new configuration is generated randomly, O(n3) time is
required to initialize the array SURF and’O(n% log n) time to initialize the AVL
trees.

The reduction of time complexity of each move discussed above makes the
Northby algorithm for lattice search more efficient. In the following, we are going

to modify Northby’s strategy for relaxation of lattice local minimizers.
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Out of curiosity, we have made a small change in the Northby algorithm by
making a relaxation whenever a new lattice local minimizer with a better potential
function value is found. With this modification, a lower energy configuration was
found for n = 134. Northby reported —781.989 as the putative global minimum
for n =134, which was found by the relaxation of an IC lattice local minimizer
(under the NN potential function). The new putative global minimum that we
have found is —782.206 which was found by the relaxation of an IC lattice local
minimizer. The configuration was found by relaxation of an IC lattice local
minimizer with a LJ potential function value of —732.376. However, the best
known lattice local minimizers have a value of —732.616, all of them relax to local
minimizers with a potential function value of —781.476.

This fact indicates that in some cases, the relaxation of a lattice local minimizer
with a worse potential function value may lead to a local minimizer with a better
potential function value. Therefore we propose the following modified Northby
algorithm for Molecular Conformation.

Algorithm 4: Modified Northby Algorithm for Molecular Conformation
1. Fix the base lattice to either the IC lattice or the FC lattice. Choose the lattice search potential
function as either the full Lennard-Jones potential function or the nearest-neighbor potential
function.
2. Repeat
2.1. randomly generate a lattice configuration;
2.2. pivot to a lattice local minimizer;
2.3. relax this lattice local minimizer with the full LJ potential function;
Until the lowest potential function value has been repeated for 250 times.

Fig. 4. Modified Northby algorithm for Molecular Conformation.

Algorithm 4 surely requires more time than Algorithm 1 because it performs
more work. Therefore we have used Algorithm 4 in addition to Algorithm 1 and
changed the stopping criterion in step 2 to 60 times instead of 250 times to save
computer time. With Algorithm 4, lower energy configurations were found for
n =65, 66,75, 76, 77 and 134, Computational results will be presented in the next
section.

4. Computational Results

The algorithm was implemented on the Cray-XMP at the Minnesota Supercompu-
ter Center (MSC) in Fortran 77 and compiled with the cft77 version 4.0 compiler
in single-precision (64-bit). Relaxations are performed using the Truncated
Newton code of S.G. Nash. For information on the Truncated Newton algorithm,
readers are referred to [14,15].
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For each problem instance (fix a cluster size, lattice type, and potential
function), the algorithm never requires more than 3 minutes of CPU time on the
Cray-xmp. Therefore the problems are solvable in interactive mode (3 minutes of
CPU time). For this reason, timing issues are not reported in the tables.

Putative global minima are reported in Table I and Table II for 13 <n <55 and
56 =n <147, respectively. Lattice searches are divided into four categories: FC
lattice NN potential, FC lattice LJ potential, IC lattice NN potential, and IC
lattice LJ potential. In these tables, an x means that a putative global minimizer
was produced by performing a lattice search in the corresponding category
followed by relaxation; an o means that the lattice search in the corresponding
category does not lead to a putative global minimizer; an. means that this
category of lattice search does not exist (for FC lattices).

The differences in results obtained by Northby Algorithm and by Modified
Northby Algorithm are presented in Table III. Note that for n = 65, 66, 75, 76,
77, and 134, lower energy configurations are found. For other values of n in Table
III; the putative global minima are found in more categories.

The optimal configuration for the 76-atom cluster is plotted in Figure 5 in the
appendix. It has a potential energy function value of —402.385. The sub-optimal
configuration for 76-atom cluster with potential function value —402.177 is plotted
in Figure 6 in the appendix. The difference in the two configurations is hard to
tell. Therefore, we present their xyz coordinates in Tables IV and V in the
appendix.

size  emergy FC lattice IC lattice | size  energy FC lattice IC lattice
n V. NN LJ NN IJ n V. NN LJ NN LJ
13 -44.327 X X X x| 35 -155.757 [ [ X X
14 -47.845 X X X x| 36 -161.825 [ [} x X
15 -52.323 X X X x| 37 -167.034 [ [} x [}
16  -56.816 X X o o| 38 -173.134 o [} X X
17 -61.318 X o [ o| 39 -180.033 o o x X
18  -66.531 X x [ o| 40 -185.250 o o X . x
19  -72.660 X o X x| 41 -190.536 o o X X
20 -77.177 X [ o o| 42 -196.278 o o X X
21  -81.685 X o o o] 43 -202.365 o o X X
22 -86.810 X o [ o} 44 -207.689 o o X X
23 -92.844 X [} o o| 45 -213.785 [} o X X
24 -97.349 x o [} o| 46 -220.680 . . X X
25 -102.373 X o [ o} 47 -226.012 X X
26 -108.316 X [ [ o 48 -232.200 X X
27 -112.874 x o o o| 49 -239.092 X X
28 -117.822 X [ [ ol 50 -244.550 X X
29 -123.587 X o) o of 51 -251.254 X X
30 -128.287 X [} o o| 52 -258.230 X X
31 -133.586 [ [ X x| 53 -265.203 X X
32 -139.636 o [ x x| 54 -272.209 X X
33 -144.843 o o X x| 55 -279.248 X X
34 -150.045 [} o X X

Table 1: Putative global minima for 13 < n < 55.
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size  energy FC lattice IC lattice | size  energy FC lattice IC lattice
n V. NN LJ NN LJ n V. NN LJ NN LJ
56 -283.643 ) ) X x| 102 -569.278 o o X X
57 -288.343 x X o o| 103 -575.659 o o X X
58 -294.378 x X o o| 104 -582.038 o o X x
59 -299.738 X o o o| 105 -588.267 o [ X x
60 -305.876 X X [ o| 106 -595.061 o [ X X
61 -312.009 X X o o| 107 -601.912 o o x x
62 -317.354 X o [ o| 108 -609.033 [ o X X
63 -323.490 X X [ o[ 109 -615.411 o o x X
64 -329.620 X x o o| 110 -621.788 o o X X
65 -334.972 X o o o| 111 -628.068 o o X X
66 -341.111 X X o o] 112 -634.875 [ [ X X
67 -347.252 x X o o| 113 -641.700 o [ x x
68 -353.395 X o o o| 114 -648.833 o o x X
69 -359.726 x o o o| 115 -655.636 o o x X
70 -366.892 b'd X [ o| 116 -662.809 [ o X b'd
71 -373.350 X o o o| 117 -668.283 o [ X x
72 -378.524 x o o) o 118 -674.770 o o x X
73 -384.789 X o o o 119 -681.419 o o X X
74 -390.908 X [ o o| 120 -687.022 o o X X
75 -396.239 X [ [ o 121 -693.820 o o x X
76 -402.385 X o o o| 122 -700.939 o o X b'd
77 -408.518 x o o o| 123 -707.802 o o X X
78 -414.681 [ o X x| 124 -714.921 o o X X
79 -421.811 [ X o o| 125 -721.303 o o X X
80 -428.084 b'd o o ol 126 -727.350 o o X X
81 -434.344 X o o) o | 127 -734.480 X X
82 -440.550 o o X x | 128 -741.332 X X
83 -446.924 o o) X x | 129 -748.461 X x
84 -452.657 o [ X x| 130 -755.271 X X
85 -459.056 o X o o] 131 -762.442 X x
86 -465.384 o o X x | 132 -768.042 X o
87 -472.098 o o X x| 133 -775.023 [ X
88 -478.935 [ o) X x i 134 -782.206 [ X
89 -486.054 o o X x| 135 -790.278 [ X
90 -492.434 o o X x | 136 -797.453 [ x
91 -498.811 [ o X x | 137 -804.631 [ X
92 -505.185 [ o X x [ 138 -811.813 [) X
93 -510.878 [ o x x| 139 -818.994 X b3
94 -517.264 o [ X x | 140 -826.175 b'd X
95 -523.640 [ o X x | 141 -833.359 X b3
96 -529.879 [ [ X x | 142 -840.539 X X
97 -536.681 [ [ x x | 143 -847.722 X x
98 -543.547 o o X x | 144 -854.904 X X
99 -550.667 [ [ X x | 145 -862.087 X X
100 -557.040 o [ X x | 146 -869.273 . X b3
101 -563.411 [ [ X x | 147 -876.461 . . X X
Table 2: Putative global minima for 56 < n < 147.
—___Northby Algorithm Modified Northby Algorithm
size _energy FClattice ICTattice | size  energy FC latfice IC lattice
n V., NN LJ NN IJ n V. NN LJ NN L7
14 -47.84%6 3 . o 14 -47.845 X X X X
15  -52.323 X . ol 15 -52.323 X x X X
19  -72.660 X . ol 19 -72.660 X o x X
50 -244.550 . X o| 50 -244.550 . X X
65 -334.915 [ X [] o] 65 -334.972 X o o [
66 -341.043 o X [ of 66 -341.111 X X [ o
67 -347.252 [ x o o| 67 -347.252 X X [ o
75 -396.037 o X [ o| 75 -396.239 X o ) o
76 -402.177 o X [ o| 76 -402.385 X [ [ o
77 -408.463 [ o X x| 77 -408.518 X [ [ [
134 -781.989 . X ol 134 -782.206 . o X
139 -818.994 [ x | 139 -818.994 X X

Table 3: Difference in results from different algorithms.

433
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5. Conclusions

In this paper, we have introduced simple data structures into the Northby
algorithm for lattice search which greatly reduce the time complexity of the
original algorithm. With this improvement, we were able to compute the ground
states of Lennard-Jones clusters much faster. We have also modified the Northby
algorithm for Molecular Conformation by relaxing every lattice local minimizer
found in the process. With this improved algorithm, lower energy configurations
were found for n =65, 66, 75, 76, 77 and 134. These findings also show that in
some cases, the relaxation of a lattice local minimizer with a worse potential
function value may lead to a local minimizer with a better potential function value.
Since these cases are less than 5% of the total cases, we still believe that in most
of the cases, the relaxation of a global lattice minimizer will results in a
configuration with a lower energy than the relaxation of a non-global lattice local
minimizer.

It should be noted that the search for a lattice global minimizer can be
formulated as a discrete optimization problem. We need to assign n atoms to
m=n lattice points. Corresponding to each assignment, there is a potential
energy function value. The lattice global minimizer corresponds to the assignment
which has the lowest potential energy function value. This problem could be
solved by existing techniques for quadratic assignment problems. It can also be
viewed as a set partitioning problem and solved using techniques for set
partitioning.
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Appendix
A. THE CONSTRUCTION OF IC AND FC LATTICES

The icosahedral lattice [3,7,16] introduced by Mackay can be described as 20
slightly flattened tetrahedrally shaped fcc units with 12 vertices on a sphere
centered at the origin. The ratio between the interatomic spacing in the 20
equilateral outer faces and the radial lines connecting the 12 vertices with the
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origin is ;, which is approximately 1.05146.
1+ cosl =
For the IC lattice, the total number of the lattice on each layer is 1, 12, 42,
92,...,10i*+2, . ... Therefore the number of lattice points in the sequence of

closed shell IC lattice is 1, 13, 55, 147,...,1+(10i> + 15i* + 11i)/3, . . . .

The FC lattice consists of a smaller IC lattice enclosed by a layer of stacking
fault icosahedral shell. This shell has 12 vertices and 20 facets as described above.
However, it has fewer filling lattice points on each facet. These lattice points are
located at the stacking fault positions of the IC lattice shell. The number of lattice
points on the outer layer of an FC lattice is 1, 12, 32, 72, 132,...,10i(i— 1) +
12, . ... Therefore the number of lattice points in the sequence of closed shell FC
lattice is 1, 13, 45, 127, ..., 11+ (10i* + 15i* — 19i)/3, . . ..

Figure 1 of [16] best describes how each of the facets are filled with other lattice
points for both the IC shell and the FC shell. A short fortran subroutine for
constructing the icosahedral lattice is attached in the following.

subroutine icgen(n, x, y, z)

integer n
double precision x(n), y(n), z(n)
CHRARAR AR
c This subroutine generates the coordinates for an icosahedron
c lattice with n points
c
c n is an integer INPUT variable
c on entry, n is the number of points in an icosahedron lattice
c on exit, n is not changed
c
c X, y, z are double precision OUTPUT arrays
c on entry, they need not be specified )
c on exit, they contain the x-y-z coordinates of the lattice
kAR Rk

integer i, j, k, point, oldpoint, newpoint, ir
double precision cccc, ssss, angle, cosalpha, sinalpha
double precision cc, ss, r, xi, yi, z1, x2, y2, z2, x3, y3, z3

angle = -2.0%3.1415926/5.0

cccc = cos(angle)

ssss = sin(angle)

cc = cos(angle/2.0)

88 = sin(angle/2.0)

cosalpha = c¢c/(1.0 + cc)

sinalpha = 8qrt(1.0 - cosalpha*cosalpha)
point = 1
x(1) = 0.
y(1) = o.
z(1) = 0.
oldpoint

nooo

r=1.0
00010 ir = int(r)
0.0
r
0.0
r*ginalpha

«
oy
H o o0
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y2 = r¥*cosalpha

z2 = 0.0

X3 = cccc*x2 + 8888%22
y3 = y2

z3 =-8888%X2 + cccc*z2
do 00030, i =0, ir-1
do 00020, j = 1, ir-i
point = point + 1

x(point) = real(i)/r*x1 + real(j)/r*x2 + real(r-i-j)/r*x3
y(point) = real(i)/r*y1 + real(j)/r*y2 + real(r-i-j)/r+y3
z(point) = real(i)/r*zi + real(j)/r*z2 + real(r-i-j)/r*z3

00020 continue
00030 continue

x1 = cc*x2 + 8s8%z2
yl =-y2
z1 =-88%x2 + cc*z2
do 00050, i =1, ir
do 00040, j = 0, ir-i
point = point + 1

x(point) = real(i)/r*x1 + real(j)/r*x2 + real(r-i-j)/r+x3
y(point) = real(i)/r*y1 + real(j)/r*y2 + real(r-i-j)/rxy3
z(point) = real(i)/r*z1 + real(j)/r*z2 + real(r-i-j)/r*z3

00040 continue
00050 continue

x2 = cccc*xl + ssss*zl
y2 = yi
z2 =-ssss*xl + cccc*zl
do 00070, i =1, ir-1
do 00060, j =1, ir-i
point = point + 1
x(point) = real(i)/r*xi + real(j)/r*x2 + real(r-i-j)/r*x3
y(point) = real(i)/r*yl + real(j)/r*y2 + real(r-i-j)/r*y3
z(point) = real(i)/r*zl + real(j)/r*z2 + real(r-i-j)/r*z3
00060 continue
00070 continue

x3 = 0.0
y3 =-r
z3 = 0.0

do 00090, i =1, ir-1
do 00080, j = 0, ir-i-1
peint = point + 1
x(point) = real(i)/r*x1 + real(j)/r*x2 + real(r-i-j)}/r*x3
y(point) = real(i)/r*yl + real(j)/rxy2 + real(r-i-j)/r*y3
z(point) = real(i)/r*zl + real(j)/r*z2 + real(r-i-j)/r*z3
00080 continue
00090 continue
newpoint = point

do 00110, k =1, 4
do 00100, i = oldpoint + 1, newpoint
point = point + 1
x(point) = cos(k*angle)*x(i) + sin(k*angle)*z(i)
y(point) = y(i)
z(point) =-sin(k*angle)*x(i) + cos(k*angle)*z(i)
00100  continue
00110 continue
peint = point + 1

x(point) = 0.0
y(point) = r
z(point) = 0.0

point = point + 1
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x(point) = 0.0
y(point) = -r
z(point) = 0.0
oldpoint = point

if (oldpoint .1t. n) then
r=r+1.0
goto 00010
endif
99999 return
end

Fig. 6. Northby’s result for the 76-atom cluster, energy = —402.177.
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B. CONFIGURATIONS FOR THE 76-ATOM CLUSTER

In this section, we provide information for the configurations for the 76-atom
cluster. Both the coordinates and the plots are provided here. Note that the two
configurations are not the same and that one can not be obtained by performing
reflection or rotation. They have different potential energy function values.

T Yi Zfl i zi yi %
0.002 -0.001 0.002(391-1.389 0.845 -0.981
0.838 0.408 0.013 || 40 | -0.702 1.382 -0.482
0.680 -0.423 0.502 || 41 | -0.013 -0.020 -1.621
0.256 0.409 0.807 || 42 | -0.976 -0.014 -1.300

-0.255 -0.418 0.778 || 43 | -0.557 -0.870 -1.591

-0.680 0.411 0.502 |( 44 | 0.408 -0.889 -1.304

-0.839 -0.417 0.005 || 45 ] -0.275 -1.383 -0.766

-0.684 0.414 -0.479 || 46 | 1.121 0.844 -0.804

-0.268 -0.426 -0.783 {l 47 | 0.519 0.838 -1.612
0.255 0.410 -0.789 || 48 | 0.261 1.379 -0.800
0.673 -0.434 -0.485 | 49| 1.548 -0.020 -0.490

12 [ -0.003 0.930 0.016 || 50 | 0.949 -0.021 -1.314

13| 0.017 -0.937 0.016 || 51 | 1.365 -0.876 -0.992

141 1.119 0.839 0.842 ] 52 1.379 -0.879 0.017

15] 1.702 0836 0.019] 53| 0.688 -1.414 -0.494

16 | 0.856 1.377 0.023 i 54 | -0.004 1.895 0.025

171 0.946 -0.020 1.346 } 55| 0.021 -1.903 0.043

18 | 1.552 -0.016 0.527 || 56 | -0.741 . -2.211 -0.468

19 ] 1.365 -0.866 1.030 j 57 | -0.225 0.614 2.299

20| 0.407 -0.857 1.311] 58| -1.013 -1.651 1.400

21| 0.697 -1.401 0.533{ 59 |-1.889 0.071 1.463

22 | -0.439 0.831 1.346 | 60 | -1.600 -1.660 0.578

23] 0.509 0.821 1.648 | 61 |-1.008 -1.720 -1.292

24 1 0.257 1373 0.845( 62 ]-1.181 0.615 1.985

25 { -0.947 -0.027 1.310 || 63 | -0.053 -1.708 -1.656

26 | -0.014 -0.027 1.616 || 64 | 0.127 -0.773 2.268

271-0.518 -0.843 1.567 || 65 | -1.451 -0.777 1.746

28 1-1.106 -0.859 0.813) 66| 1.084 -0.777 1.987

29 { -0.262 -1.377 0.820 | 67 | -0.786 -1.276 2.359

30 (-1.399 0.845 0.024 |f 68 | -1.593 -1.708 -0.464

31|-1.384 0.823 1.030 || 69 [ -2.051 -0.786 0.950

32|-0.701 1375 0.533| 70 |-0.035 -1.644 1.754

331-1.564 -0.009 -0.484|f 71 ] 0.231 -2.187 0.965

34 |-1557 -0.018 0.527 § 72| 0.921 -1.653 1.471

351-1.706 -0.855 0.020{ 73| 0.202 -2.225 -0.858

36| -1.137 -0.876 -0.789 || 74 | -0.747 -0.237 2.267

37]-0.837 -1.374 0.030|f 75| 0.653 0.074 2.299

381-0.439 0.848 -1.308 || 76 | -0.751 -2.183 0.579

-
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Table IV. Optimal configuration for 76-atom cluster, energy = —402.385.
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i z; Y Zif i z; ¥ %

1]-0.003 -0.001 0.002( 39/(-1.383 0.816 -0.982

2| 0.827 0.423 -0.004 || 40 | -0.713 1.353 -0.507

3| 0.662 -0.422 0.493 || 41 | -0.018 0.011 -1.641

41 0.248 0423 0.795 || 42 1 -0.961 -0.002 -1.300

51-0.279 -0.414 0.795 || 43 | -0.521 -0.835 -1.631

6]-0.676 0428 0.491 || 44 | 0.424 -0.852 -1.333

71-0.837 -0.419 0.002} 45 -0.281 -1.376 -0.835

81-0.679 0.402 -0.482 | 46 | 1.104 0.868 -0.826

9-0.254 -0.414 -0.801 |{ 47 | 0.495 0.859 -1.627
10| 0.249 0.421 -0.798 || 48 | 0.234 1.391 -0.829
11| 0.669 -0.418 -0.495] 49| 1.540 0.005 -0.510
12 [ -0.010 0.937 -0.006 |{ 50 | 0.943 0.007 -1.328
13 | -0.017 -0.937 -0.007 || 51 | 1.368 -0.849 -1.005
14| 1.109 0.867 0.811| 52| 1.372 -0.862 -0.001
15| 1.689 0.859 -0.007 || 53 | 0.673 -1.389 -0.514
16 | 0.839 1.398 -0.014 || 54 | -0.029 1.906 -0.020
17 ] 0.940 0.000 1.322 55| -0.039 -1.904 -0.022
18 | 1.536 0.000 0.503 || 56 | -2.087 -0.713 -0.891
19} 1.354 -0.858 1.004 || 57 | -1.930 0.136 -1.392
20| 0398 -0.859 1.321{j 58| -1.669 -1.606 -0.611
21| 0.666 -1.395 0.500 || 59 | -0.284 0.753 -2.244
22 |-0.442 0.875 1.316 1 60| -0.992 2.168 -0.074
23| 0.512 0.860 1.616 { 61 |-2.376 -0.137 -0.009
241 0.246 1398 0.804 | 62 |-2.218 0.711 -0.511
251(-0.982 0.022 1.309] 63|-1.980 0.185 1.332
26 | -0.026 0.008 1.629 | 64 | -1.574 -0.667 1.666
27 [ -0.574 -0.838 1.614 || 65| -1.687 1.635 0.441
28 | -1.150 -0.849 0.806 || 66 | -1.085 -1.600 -1.406
29 [ -0.299 -1.384 0.807 || 67 | -0.810 -0.116 -2.244
30|-1.383 0.841 -0.008 ) 68 | -2.212 0.722 0.489
31[-1.377 0.874 0.989 | 69| -0.122 1.633 -1.728
32 (-0.713 1398 0.487 | 70|-1.669 1.620 -0.549
33 |-1.546 -0.008 -0.498 || 71 1-1.221 0.726 -1.921
34]-1.537 0.011 0.486 | 72{-0.831 -2.151 -0.610
35]-1.704 -0.846 -0.003 || 73 | -0.389 2.166 -0.912
36 -1.113 -0.835 -0.8111| 74 | -2.144 -0.657 0.845
37| -0.884 -1.382 -0.011}) 75]-1.058 1.617 -1.398
38 |-0.455 0.838 -1.299| 76| -1.495 -0.709 -1.704

Table V. Sub-optimal configuration for 76-atom cluster, energy = —402.177
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